Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system

نویسندگان

  • Monika Rezulak
  • Izabela Borsuk
  • Iwona Mruk
چکیده

Restriction-modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a Seamless and Restriction Endonuclease-free Cloning Method to Produce Recombinant Full-length N-terminal His-tagged Streptolysin O in E.coli

Background and Aims: DNA cloning, sub-cloning and site directed mutagenesis are the most common strategies in nearly all projects of recombinant protein production. The classical method of restriction site cloning is unsatisfactory due to the need for supply of restriction enzymes and the inefficiency of the digestion reaction. Many new methods, including recombinatorial cloning and ligation in...

متن کامل

Role and mechanism of action of C. PvuII, a regulatory protein conserved among restriction-modification systems.

The PvuII restriction-modification system is a type II system, which means that its restriction endonuclease and modification methyltransferase are independently active proteins. The PvuII system is carried on a plasmid, and its movement into a new host cell is expected to be followed initially by expression of the methyltransferase gene alone so that the new host's DNA is protected before endo...

متن کامل

Transcription regulation of the EcoRV restriction–modification system

When a plasmid containing restriction-modification (R-M) genes enters a naïve host, unmodified host DNA can be destroyed by restriction endonuclease. Therefore, expression of R-M genes must be regulated to ensure that enough methyltransferase is produced and that host DNA is methylated before the endonuclease synthesis begins. In several R-M systems, specialized Control (C) proteins coordinate ...

متن کامل

MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection

MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition d...

متن کامل

Esp1396I restriction-modification system: structural organization and mode of regulation.

Esp1396I restriction-modification (RM) system recognizes an interrupted palindromic DNA sequence 5'-CCA(N)(5)TGG-3'. The Esp1396I RM system was found to reside on pEsp1396, a 5.6 kb plasmid naturally occurring in Enterobacter sp. strain RFL1396. The nucleotide sequence of the entire 5622 bp pEsp1396 plasmid was determined on both strands. Identified genes for DNA methyltransferase (esp1396IM) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016